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On the Anharmonic Contribution to the Specific 
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We have presented a method for an exact calculation of the two lowest-order, 
cubic (F3) and quartic (F4), perturbation terms in the Helmholtz free energy (F) 
of an anharmonic crystal in the high temperature limit. The method is applicable 
to a nearest-neighbor central force model of a monatomic fcc crystal for any 
phenomenological two-body potential q~(r). The calculation of F 3 and F4 requires a 
knowledge of the six dimensionless Brillouin zone (BZ) sums, as a function of a 
parameter a~ depending on the first and second derivatives of q~(r). These sums are 
calculated to a high degree of accuracy for a mesh size of 308,000 points in the 
whole BZ in the range -0.1 _< a~ _< + 0.1 in steps of 0.02. The linear temperature 
dependent anharmonic contribution to the specific heat at constant volume, 
calculated for the elements Pb, Ag, Ni, Cu, A1, Ca, and Sr, from the Morse and 
Rydberg potentials, is found to be positive in all cases, with the exception of Pb. In 
this case the Morse potential gives a negative sign. The predictions of theory are in 
agreement with experiments where the data is available (e.g., Cu, AI, and Pb). 

KEY WORDS: Helmholtz free energy; anharmonic fcc crystal; specific heat; 
perturbation theory; Brillouin zone sums. 

1. I N T R O D U C T I O N  

D u r i n g  the  pas t  20 years ,  m a n y  ca lcu la t ions  have  been  p e r f o r m e d  of  the  two 

lowes t -o rde r  a n h a r m o n i c  f ree  e n e r g y  (F3 and  F4) t e rms  of  ra re  gas  a n h a r -  

m o n i c  crys ta ls .  For  an  exhaus t i ve  rev iew of  t he  ca l cu la t ions  of  F3 and  F4 for 

r a re  gas  solids, see [ 1 ]. F3 and  F4 ar ise  f r o m  the  cub ic  and  q u a r t i c  t e rms  in the  

T a y l o r  ser ies  expans ion  o f  t he  c rys ta l  po ten t i a l  energy .  In  t he  h igh  t e m p e r a -  
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ture limit (T  > 0D), where OD is the Debye temperature, F3 and F4 both 
contribute to Cv (specific heat at constant volume), a term linear in tempera- 
ture (T), i.e., 

{2 } 
Cv(anharmonic) ~ Cv A = 3R - ~ [a3(v ) § a4(v)] K s T  (1) 

where the volume dependent coefficients a3(v ) and a4(v ) in Eq. (1) are 
obtained from/73 and F4, respectively, K8 is the Boltzmann constant, and R is 
the gas constant. 

One of the earlier calculations of a3(v) and a4(v ) was carried out in the 
high temperature (HT) limit by Stern [2] for a special nearest-neighbor 
model of bcc Na crystal. The next exhaustive calculations of a3(v ) and an(v ) 
in the HT limit were performed by Maradudin et al. [3] for a nearest- 
neighbor central force model of a fcc crystal in the leading-term approxima- 
tion. The leading-term approximation involves retaining only the highest- 
order radial derivative in each of the expressions for the cartesian tensor 
derivatives of the two-body potential qS(r), which occurs in the mathematical 
expressions for F 3 and F4. Maradudin et al. [3] also corrected an error in the 
a3(v ) calculation by Stern [2] and performed their calculations at v = v0, 
corresponding to the volume (Vo) at the minimum in 4~(r) at the nearest 
neighbor distance (ro), i.e., ~b'(ro) = 0. 

In this paper, we present a calculation of F3 and F4 for the monatomic fcc 
structure, using the central force model potential, ~b(r), without making the 
leading term approximation. The error [4] introduced in F3 and F4 in this 
approximation is 0.3% and 40%, respectively. Here we do not assume 4r = 
0. Thus our calculations of/73 and F4 have been carried out for a set of values 
of the ratia al ~ ck'/[r(gY' - rk'/r)] [5], where q~' and ~b" are the first and 
second radial derivatives of ~b(r). This ratio serves to characterize the various 
nearest-neighbor potentials 4~(r), and, in addition, for a given potential 4~(r), 
its variation can represent changes in the lattice constant a0 and hence the 
variation of F3 and F4 with volume. In other words, we obtian a3(v) and a4(v) 
at any volume for a given potential q~(r). 

Often the parameters of the phenomenological potentials such as the 
Morse and Rydberg potentials of Girifalco and Weizer [6] and Varshni and 
Bloore [7], respectively, are determined by considering "all" neighbor inter- 
actions. For these potentials the ratio al is negative. Most cases are taken care 
of if we restrict al to the range -0 .1  _< a~ +0.1. The calculations ofF3 and F4 
presented in this paper are in this range of a~ in steps of 0.02. The range of al 
in [5] was -0 .02  _< al _< 0.1, which is not adequate for the above potentials. 

In Sec. 2, we present a summary of the expressions for F3 and F4 in terms 
of dimensionless sums. These dimensionless sums are functions of the 
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frequency co(q j)  for a wave vector q and branch index j. co(q j) are obtained 
by diagonalizing the dynamical matrix D,~ (q), which depends on the ratio al. 
Hence the dimensionless sums also depend on the ratio al. 

The calculation of these dimensionless sums as a function of al is 
presented in Sec. 3. As an example, calculations of F3 and F4 and Cv A for a 
number of materials are presented in Sec. 4 where, given any q~(r) such as 
Morse or Rydberg potentials, it is shown how to find the value of the 
dimensionless sums required in the calculation of F3 and F4. 

A discussion of the numerical results obtained in this paper for a number 
of materials (Pb, Ag, Ni, Cu, A1, Ca, Sr) and the validity of the nearest- 
neighbor model for metals are presented in Sec. 5, where it is concluded that 
the model used in this paper has its usefulness in metals involving large ion 
cores, such as Cu. 

2. EXPRESSIONS FOR F3 AND F4 AND THE RATIO a~ 

A complete derivation of the expressions for F3 and F4 in computational 
form for the "all" neighbor interaction potential q~(r), without making any 
approximation, for a monatomic fcc or bcc structure can be found in Shukla 
and Taylor [8]. Hence there is little point in repeating this derivation here. 
For our purposes we can write the expression for F4, for a nearest-neighbor 
central force model of an fcc crystal [4], in the following form: 

N(KgT)2[ 2C(ro) 4B(ro) J 
F4 641B(ro) [2 D(ro)S4A + ro S4B + --ro 2 $4C (2) 

where N is the Avogadro number; S4A, S4B, and $4C are the dimensionless 
single whole Brillouin zone sums; KB and T have been defined in Eq. (1); and 
B(ro), C(ro), and D(ro) are the various combinations of the first four 
derivatives of qS(r) evaluated at to, and their expressions in terms of these 
derivatives are given by 

1 
B(ro) = ~b"(ro) - --qS'(ro) (3) 

Fo 

3 
C(ro) = r - r + - -  qS'(ro) (4) 

r0 2 

_ 15 ,, 15 
D(~o)  = ~ '~(ro)  6 ,~ '"(ro)  + ~ ,~ (ro)  - - -  '~ ' ("o) 

r 0 ro 3 
(5) 

where r 0 is the nearest-neighbor distance (r,). 
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The expression for F3 is more complicated than F4. For a nearest- 
neighbor central force model of an fcc crystal, the complete expression for F3 
can be written in the following form [4]: 

N(KBT)2[C(r~ [S3A + 6(RBC)S3B + (RBC)2S3C] (6) 
F3 = -  (96)(32)[B(ro)]3 

where S3A, S3B, and $3C are dimensionless double Brillouin zone sums. 
RBC = 2B(ro)/roC(ro), and the other symbols have been defined earlier in 
connection with Eq. (2). 

The expressions for the dimensionless sums S4A, S4B, and $4C arising 
in F 4 are given in full in Ref. [8]. We will not reproduce them here, but, in 
order to see how they depend on the ratio al, let us consider the full expression 
for S4A for a nearest-neighbor fcc crystal [3,8]: 

[z ao 12 [ex(qj)  + ey(qj ) ]  2 [1 - cos (qx + qy)] S4A = ~-~ XZ(qj) ~- (7) 

where the summations over the wave vector q and j are over the whole first 
Brillouin zone and branch index, respectively; e, (qj)  are the eigenvector 
components (o~ = x,y,z), and X(qj) are the dimensionless frequencies to be 
determined from the dynamical matrix D~(q). For a potential q~(r) and the 
nearest-neighbor fcc crystal, the diagonal, Dxx(q) and the off-diagonal, 
Dxy(q), matrix elements are given by [9] 

MDxx(q) = 2B(ro)[2 - C~(Cy + C~) + 2a,(3 - CxCy - Cyc~ - C~C~)] (8) 

un~y(q) = 2B(ro)S~Sy (9) 

where, in Eqs. (8) and (9), Ci = cos aoqi, Si = sin aoqi(i = x,y,z); M is the 
atomic mass; and B(ro) and the ratio al have been defined above. 

The eigenvalue equation is given by 

D.B(q) ee (q j )  = w 2 (q j )  e. (q j )  (10) 

where c~,/3 = x,y,z, a n d j  = 1,2,3. 
The dimensionless frequencies X(qj) in Eq. (7) are obtained from the 

scaling procedure 

2B(r~ X2(qj) (11) 
~~ J) M 
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Clearly then, X(qj) depends on the ratio al, and thus S4A depends on a~. 
Similarly, the other dimensionless sums S4B and $4C in F 4 depend on a~. 

In the same manner one can see that the other sums S3A, S3B, and $3C, 
involving double Brillouin zone summations and triple branch index summa- 
tions in the expression for F3, Eq. (6), also depend on a~. The expressions for 
S3A, etc., are lengthy and we do not reproduce them here. They can be 
obtained from Refs. [3, 4, 8] 

3. CALCULATION OF THE DIMENSIONLESS SUMS 

The dimensionless sums S4A, S4B, $4C, and S3A, S3B, $3C can be 
calculated by the method described in Shukla and Wilk [4]. In Ref. [4], these 
sums were calculated for a~ = 0. The calculation requires the knowledge of 
the following tensorial Brillouin zone sums for a direct lattice vector r~: 

ex(qj)ex(qj) 
Sxx(I) = ~ cos (q �9 r ~) (12) X2(qj) 

ex(qj)ey(q)) cos (q �9 r t) (13) Sxy(l) = ~ X2(qj) 

The other two-diagonal and off-diagonal tensors, viz., Syy(l), Szz(l), 
Sxz(l), and Syz(l) are obtained from the above by proper interchange of the 
indices. It has been shown in Ref. [4] how to reduce the whole Brillouin sums 
in Eqs. (12) and (13) to the 1/48th portion of the zone and eliminate t h e j  
summation, using the following simple version of Born's theorem [ 10]: 

e~(qj)ee(qj) [H i(q)l~e 
~ X2(qj) 

where [H l(q)]aN is the ~r3 element of the inverse dynamical matrix defined 
by Eqs. (8) and (9) with 2B(ro)/M = 1. 

Our procedure in computing S4A, S4B, $4C, and S3A, S3B, $3C was to 
first calculate and store S~(I) for a sufficient number of direct lattice vectors 
i. This was done for 11 values ofa~ in the range -0 .1  _< a~ _< +0.1 in steps of 
0.02. S,~(I) are then obtained from Eqs. (12) and (13). In the actual 
calculation of S4A, S4B, $4C, and S3A, S3B, $3C, the appropriate sum was 
selected as needed by comparing the direct lattice vector in the argument of 
S~(I) with those of the stored general set of direct lattice vectors. 

In all the calculations, we have used a simple cubic mesh of wave vectors 
with q = ~rp/Lao and boundaries of the 1/48th portion of the first Brillouin 



78 Shukla 

TableI. DimensionlessSums, S4A, S4B, and S4C, for Different Valuesofa~ 

al S4A S4B $4C 

0.10 6.6424 36.1406 32.8783 
0.08 7.3575 40.1996 36.9149 
0.06 8.2049 45.0390 41.7913 
0.04 9.2219 50.8877 47.7716 
0.02 10.4613 58.0712 55.2378 
0.00 12.0000 67.0682 64.7629 

-0.02 13.9544 78.6124 77.2455 
-0 .04 16.5105 93.8898 94.1752 
-0 .06 19.9855 114.9579 118.2144 
-0.08 24.9771 145.7607 154.6527 
-0 .10 32.7935 195.1482 215.9211 

zone defined by L >_ Px >- Py >- Pz >- O, Px + Py + P~ -< 1.5L, where Px, Py, P~ and 
L are integers and a0 is the lattice constant. This yields 4L 3 points in the whole 
zone. In Ref. [4], the step length L = 7, corresponding to 1372 points in the 
whole zone, was used in computing S4A,  S4B, $4C and S3A,  S3B, $3C for 
a~ = 0. Here, in this paper, we have calculated these sums for L = 30, which 
corresponds to 308,000 points in the whole zone. We have presented in Tables 
I and II the sums S4A,  S4B, $4C and S3A,  S3B, $3C, respectively, for 11 
values ofa~ in the range -0 .1  _< a~ _< +0.1 in steps of 0.02. 

4. CALCULATION OF F3, F4 AND C A 

The cubic and quartic terms of the Helmholtz freen energy, F 3 and F4, 
can be calculated from Eqs. (2)-(6)  presented in Sec. 3 for any two-body 

TablelI .  DimensionlessSums, S3A, S3B, and $3C, ~r  Different Valuesofa~ 

al S3A S3B $3C 

0.10 70.5913 38.4839 305.3829 
0.08 82.3512 44.7611 356.0845 
0.06 97.0710 52.5874 419.5128 
0.04 115.8116 62.5078 500.2258 
0.02 140.1570 75.3319 605.0335 
0.00 172.5623 92.3066 744.5057 

-0 .02 217.0117 115.4410 935.8389 
-0.04 280.3586 148.1617 1208.742 
-0 .06 375.3332 196.7660 1618.819 

0.08 528.2631 274.0925 2282.677 
-0 .10 803.4675 410.8234 3493.464 
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potential q~(r) in the following manner. First we find the derivatives ~b'(r) and 
qS"(r) of qS(r) and then compute the ratio a~, defined by 

(r ] 
al (4)';Z ~7/r) .... (14) 

For this value of a~, the values of the dimensionless sums S4A, S4B, $4C and 
S3A,  S3B, $3C, which are functions of a l, are obtained by interpolation from 
the Tables I and II, respectively. Next, we obtain the other derivatives of qS(r) 
and compute B(ro), C(ro) and D(ro) from Eqs. (3)-(5). Finally, with all this, 
F4 and F3 are easily computed from Eqs. (2) and (6), respectively. The 
anharmonic contribution to Cv from F3 and F4 is obtained from the following: 

0 2 
Cv A= - T ~ 5  ( F3 + F4) = 3 R A K a T = 3 R B T ,  where B = AKB (15) 

As an example of the above description of finding F3, F4, and Cv A for a 
given 4~(r) from Tables I and II, we consider the following two widely used 
phenomenological potentials: (a) the Morse potential, q~t(r), and (b) the 
Rydberg potential, 4~R(r), defined by 

qSM(r) = D[exp {-2cffr - 3"0)} - 2 exp { - a ( r  - 3"0)}] (16) 

4~R(r) = - D [ 1  + a( r  - 3"0)] exp [-c~(r - 3"0)] (17) 

where the potential parameters D, c~, and 3'0, appearing in qSM(r ) and dpe(r), 
have been determined for a number of monatomic fcc materials by Girifalco 
and Weizer [6] and Varshni and Bloore [7], respectively. 

Following the procedure outlined above, we have calculated numerical 
values ofa~, F3, F4, F = F3 + F4, and the anharmonic coefficient B in Eq. (15) 
for the elements Pb, Ag, Ni, Cu, A1, Ca, and Sr. These results for q~M(r) and 
qSR(r ) potentials [6, 7] are presented in Tables III and IV, respectively. 

5. DISCUSSION 

The method presented in this paper of an exact calculation of the two 
lowest-order perturbation terms in the Helmholtz free energy (F) of an 
anharmonic crystal, viz., F 3 and F4, is applicable to a nearest-neighbor central 
force model of a monatomic fcc crystal in the high temperature limit. Given 
any phenomenological two-body potential qS(r), F3 and F4 and their contribu- 
tion to C / c a n  be calculated from the equations given in the previous sections. 
We performed these calculations for seven elements (Pb, Ag, Ni, Cu, A1, Ca, 
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Table III. Cubic, F3, quartic,/74, the total free energy, F, and the coefficient, B, 
in Cv~/3R = BT, for the Morse Potential a 

Elements al F3 /74 F ~ F~ + F 4 B 

Pb -0.048 -0.34940 0.37142 0.02202 -2.027 
Ag -0.052 -0.24382 0 . 2 3 9 8 4  -0.00399 0.367 
Ni -0.067 -0.17853 0 . 1 3 4 8 7  -0.04367 4.019 
Cu -0.069 -0.21816 0 . 1 5 6 1 5  -0.06201 5.707 
AI -0.076 -0.27377 0 . 1 7 1 3 2  -0.10245 9.429 
Ca -0 .083  -0.45473 0 . 2 3 8 1 9  -0.21654 19.929 
Sr -0.084 -0.48558 0 . 2 5 2 3 3  -0.23325 21.467 

aF3, F4, and Fare in units of 1012 N(KsT)  2 erg -1 and B is in units of 10-6/K. 

and Sr) ,  employing the Morse  and Rydbe rg  phenomenological  potentials .  In 
all our calculat ions  we have used the Morse  and Rydbe rg  potent ia l  pa rame-  
ters de te rmined  by Gir i fa lco  and Weize r  [6], and Varshni  and Bloore [7], 
respectively.  The  value of the pa rame te r  b quoted in Tab le  II  of Ref.  [7] for 

Ca  is in error.  The  correct  value communica ted  to the author  by Y. P. Varshni  
is b = 1.1884. This value has been used in the present  calculat ions of F z, F4, 

and  B for Ca.  
I t  is interest ing to note tha t  both  the  potent ials  predict  a positive 

anharmonic  contr ibut ion for Cv in six elements,  viz., Ag,  Ni ,  Cu, A1, Ca,  and 

Sr,  but  for Pb  the signs are  opposite.  
There  are  two sets of  predict ions of Cv A f rom the exper imenta l  da t a  on 

the hea t  capac i ty  in A1 [11, 12]. The  predic t ion of Cv A being positive f rom 
both the  potent ia ls  agrees  with Brooks and Bingham [1 1]. Leadbe t t e r  [12] 
predic ts  a negat ive C~.  Cur ren t ly  we a re  ana lyz ing  this s i tuat ion in A1, and  
the results of our findings will be repor ted  later .  For  Pb  the two potent ia ls  give 
opposi te  results: positive Cv A from Rydbe rg  and negat ive Cv A from Morse.  The  

Table IV. Cubic, F3, quartic, F4, the total free energy, F, and the coefficient, B, in C~ = BT, 
for the Rydberg Potential a 

Elements al F3 F4 F = F3 + F4 B 

Pb -0.042 -0.32612 0 . 3 1 1 3 2  -0.01479 1,362 
Ag -0.049 -0.22106 0 . 1 8 4 8 0  -0.03626 3.337 
Ni -0.062 -0.16057 0 . 1 0 5 1 4  -0.05543 5.101 
Cu -0.064 -0.19458 0 . 1 1 9 3 2  -0.07525 6.926 
AI -0.071 -0.24209 0 . 1 2 7 0 6  -0.11503 10.587 
Ca -0.078 -0.39899 0 . 1 7 1 1 0  -0.22789 20.974 
Sr -0.078 -0.42799 0 . 1 8 3 5 8  -0.24440 22.494 

"F3, F4, and Fare in units of 10 t2 N(KBT) 2 erg -I and B is in units of 10-6/K. 
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latter prediction is in agreement with the analysis (experimental) of Leadbet- 
ter [12]. For Cu the prediction of the sign of C / f r o m  both the potentials 
agrees with that of Brooks' [13] analysis of the experimental heat capacity 
data. 

Now the question arises: Is the nearest-neighbor model useful in the 
calculations of the above type? It would seem that for metallic crystals the 
nearest-neighbor central force (nncf) model is inadequate if the volume 
dependent terms arising from the electron gas effects are not included in the 
potential function. As a matter of fact, the interatomic forces, even in such 
simple metals as Na, K, etc., are long range and oscillatory and, in addition, 
they change as the crystal volume changes. The calculation of F3 and F4 in 
such cases is very time consuming, with the additional difficulty of conver- 
gence of the sums arising in F4. A full description of the method of F3 and F4 
calculation and a discussion of the convergence difficulties can be found in 
the paper of Shukla and Taylor [8]. In such cases the nncf model has very 
little or no usefulness. 

On the other hand, in another report [14] on the anharmonic calcula- 
tions in metals such as copper, where the interatomic forces are known to exist 
primarily between nearest-neighbor atoms, due to the overlap of the 3d 
orbitals on adjacent atoms (overlap energy), the nncf model was found to be 
useful. The nncf model is to some extent justified in metals like Cu as seen by 
a direct calculation [15, 16] of the electron-ion contribution to the forces, 
which indicates that the convergence is rapid, and by the fit to experimental 
phonon dispersion curves given by a nearest-neighbor model [17]. In the nncf 
model of Cu employed by Cowley and Shukla [14], the overlap energy was 
represented by a Born-Mayer term of the type 

VBM(r) = a exp [p(% - 0 / 7 0 ]  (18) 

where ~, p, and % are potential parameters. The total energy was taken as 
VBM(r) plus the volume dependent electron gas contributions describing the 
kinetic, correlation, and exchange energies. It was shown in this work that the 
volume dependent electronic energy terms can be included in the potential 
function, acting between nearest neighbors, if the parameter o~ in VBM(r) is 
volume dependent. The method presented in this paper of the F3 and F4 
calculation is applicable to the above type of potentials in Cu as well as other 
similar potentials in monatomic fcc structures. 
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